The Structure of ac-Dichloro-b-ethylene-d-pyridineplatinum(ii) from Hydrogen-1 and -2 Nuclear Magnetic Resonance Spectra of Liquidcrystal Solutions

By James W. Emsley * and John Evans, Chemistry Department, University of Southampton, Southampton SO9 5NH
$A^{1} \mathrm{H}$ n.m.r. spectrum of the complex $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{D}_{5}\right)\right]$ has been obtained by decoupling of the spin coupling to deuterium for samples dissolved in thermotropic liquid crystals. The dipolar couplings have been used to obtain the relative positions of the protons and platinum. The quadrupole splittings observed in the ${ }^{2} \mathrm{H}$ n.m.r. spectra are used in conjunction with the order parameters derived from the proton spectra to show that the equilibrium structures have the pyridine ring inclined at an angle to the PtCl_{2} plane, with rapid reorientation between the symmetry-related forms.

The shapes of organic ligands attached to metals may be investigated by studying the n.m.r. spectra of liquidcrystal solutions. ${ }^{1}$ The method has the considerable advantages over diffraction experiments in that the derived structure refers to the liquid state, and can give information on internal rotations. The disadvantages are principally the difficulty of dissolving these compounds in liquid-crystal solvents, and the limitation to molecules containing no more than eight interacting spins. The platinum-ethylene complexes form a class of compounds which demonstrate these difficulties of the n.m.r. method; thus Zeise's salt, $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$, contains only four protons, but does not dissolve in thermotropic liquid crystals, and the spectrum obtained for lyotropic solution did not resolve coupling to platinum. ${ }^{2}$ The complex $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{py})\right]$ (py $=$ pyridine) does dissolve in thermotropic nematogens to a sufficient extent to give a proton spectrum by the Fouriertransform repeated-pulse technique, but the ten interacting spins do not yield a resolved spectrum. McMillin and Drago ${ }^{3}$ attempted to overcome these problems by using a polypeptide solution in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as the liquidcrystal phase, and a deuteriated pyridine ligand. The low solute ordering in this phase resulted in a spectrum showing only about 10 lines, which was interpreted as due to non-resolution of ${ }^{1} \mathrm{H}^{-2} \mathrm{H}$ and ${ }^{1} \mathrm{H}^{-195} \mathrm{Pt}$ spin-spin coupling. The spectrum was analysed to yield the interproton coupling and some useful structural information was obtained. We show here that a study of this same species by ${ }^{1} \mathrm{H}-\left\{{ }^{2} \mathrm{H}\right\}$, and by ${ }^{2} \mathrm{H}$ n.m.r. of thermotropic liquid-crystal solutions, yields much more information, and that the method is capable of application to many other similar organometallic compounds.

EXPERIMENTAL

The complex trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{py})\right]$ and its $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine derivative were prepared by adding an equivalent molar amount of pyridine or $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine to Zeise's dimer. Subsequent solvent removal, crystallisation, and vacuum drying yielded the yellow crystalline product. The rate of

1 J. W. Emsley and J. C. Lindon, ' NMR Spectroscopy using Liquid Crystal Solvents,' Pergamon, Oxford, 1975.

2 P. Dieh1 and A. S. Tracey, quoted in ' NMR, Basic Principles and Progress,' eds. P. Diehl, E. Fluck, and R. Kosfeld, SpringerVerlag, Berlin, vol. 9, p. 73.
pyridine exchange is known to be dependent on the presence of free pyridine. ${ }^{4}$ In the absence of free pyridine the ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} exhibits ${ }^{195} \mathrm{Pt}$ satellite lines for the ethylene and pyridine resonances. ${ }^{4}$ The sample prepared by the above method has a ${ }^{1} \mathrm{H}$ spectrum in $\left[{ }^{2} \mathrm{H}_{8}\right]$] toluene showing sharp satellite lines for pyridine resonances up to ca. $60^{\circ} \mathrm{C}$, and at $>70^{\circ} \mathrm{C}$ the ethylene satellite lines also begin to broaden. The spectra in liquid-crystal solutions were recorded at temperatures $<60{ }^{\circ} \mathrm{C}$. Two liquid-crystal solvents were found to give good spectra: 4,4'-di-n-heptylazoxybenzene (dhab) which exhibits nematic and smectic A phases, and a mixture of 4 -alkyl-4'-cyanobiphenyls supplied by B.D.H. Ltd. as mixture E7. Both solvents must be thoroughly dried before adding the complex to avoid premature decomposition, and in both cases $c a .1 \mathrm{mg}$ dissolved in 0.3 g of solute; thus timeaveraging techniques are essential to obtain either ${ }^{1} \mathrm{H}$ or ${ }^{2} \mathrm{H}$ spectra. The spectra were recorded using a Varian XL100-12 spectrometer in the Fourier-transform mode at $50{ }^{\circ} \mathrm{C}$ for dhab and $31{ }^{\circ} \mathrm{C}$ for E7. The ${ }^{2} \mathrm{H}$ spectra were obtained by averaging 40 K transients using ca. 40° pulse angles, $0.1-\mathrm{s}$ acquisition times, and no pulse delay. In the case of the solution in dhab the spectrum showed only four instead of six lines, possibly because the deuterium nucleus which is in the γ position relative to nitrogen exchanges with solvent. The ${ }^{1} \mathrm{H}-\left\{{ }^{2} \mathrm{H}\right\}$ spectra were obtained by irradiating at the centre of the ${ }^{2} \mathrm{H}$ spectrum with 100 W of radiofrequency (r.f.) power. The decoupler was gated for 0.2 s whilst acquiring the ${ }^{1} \mathrm{H}$-free induction decay, and off for 2 s to allow for dissipation of heat. The averaging of 4500 decays was necessary to obtain an adequate signal-to-noise ratio, as shown in the Figure.

Analysis of Spectra.--The ${ }^{2} \mathrm{H}$ spectrum comprises a doublet from each non-equivalent ${ }^{2} \mathrm{H}$ nucleus, broadened by unresolved dipolar coupling. The quadrupole splittings ${ }^{1}$ $\Delta \nu$ are given in Table 1. The ${ }^{1} \mathrm{H}-\left\{{ }^{2} \mathrm{H}\right\}$ spectra show the expected ten lines from an oriented $\mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime} \mathrm{A}^{\prime \prime \prime}$ system arising from the four protons in molecules not containing ${ }^{195} \mathrm{Pt}$, together with satellite lines arising from molecules containing the spin- $\frac{1}{2}$ isotope. The two separate spin systems were analysed using a version of LAOCN 3 modified to include dipolar coupling. The isotropic spin-spin coupling constants between protons were given the magnitude and signs appropriate to isotropic solution; ${ }^{2}$ the magnitude of $J\left({ }^{195} \mathrm{Pt}^{-1} \mathrm{H}\right)$ was taken from an isotropic

[^0]solution spectrum, but both positive and negative signs were used in deriving the dipolar coupling constant. Only the negative sign is consistent with a reasonable geometry. The dipolar couplings, $D_{i j}$, derived from both spectra are given in Table 1.

Vibrational corrections. Dipolar couplings are averages over vibrational motion, and are related to the equilibrium
disagreement over the band assignments. We have used the assignments of Hiraishi, ${ }^{6}$ who also derived a force field; however, symmetrical internal co-ordinates were used, which are not suitable for our purpose, hence we have derived a valence force field for Zeise's salt using the internal co-ordinates in Table 2. The force field has not been refined since the averaging of the $D_{i j}$ values is not

${ }^{1} \mathrm{H}-\left\{{ }^{2} \mathrm{H}\right\}$ N.m.r. spectrum of $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{D}_{5}\right)\right]$ as a solute in the nematic mixture E 7
nuclear positions for a molecule with z as a C_{2} axis by ${ }^{5}$ equation (1) where $D_{i j}{ }^{0}$ is given by (2). The terms $f_{i j \alpha \beta}$ in equation (1) may be computed from a knowledge of the normal co-ordinates of the molecule. There has not been

Table 1
Quadrupole splittings $\Delta v_{i} / \mathrm{Hz}$ derived from ${ }^{2} \mathrm{H}$ n.m.r. spectra, and dipolar couplings, $D_{i j} / \mathrm{Hz}$, from ${ }^{1} \mathrm{H}-\left\{{ }^{2} \mathrm{H}\right\}$ spectra of $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{D}_{5}\right)\right]$ dissolved in 4,4'-di-nheptylazoxybenzene (dhab) and nematic mixture E7

a full analysis of the vibrational spectrum of this molecule, but it suffices to calculate the normal co-ordinates only for

$$
\begin{align*}
& D_{i j}=D_{i j}{ }^{0}-\frac{\boldsymbol{h} \gamma_{i} \gamma_{i}}{8 \pi^{2}}\left[S_{z z}\left(2 f_{i j z z}-f_{i j x x}-f_{i j y y}\right)+\right. \\
& \left.\left(S_{x x}-S_{y y}\right)\left(f_{i j x x}-f_{i j y z}\right)+4 S_{x y} f_{i j x y}\right] \tag{1}\\
& D_{i j}{ }^{\circ}=-\frac{\boldsymbol{h} \gamma_{i} \gamma_{i}}{8 \pi^{2} \gamma_{i j}^{3}}\left[S_{z z}\left(3 \cos ^{2} \theta_{i j z}-1\right)+\right. \\
& \left(S_{x x}-S_{y y}\right)\left(\cos ^{2} \theta_{i j x}-\cos ^{2} \theta_{i j y}\right)+ \\
& \left.4 S_{x y} \cos \theta_{i j x} \cos \theta_{i j y}\right] \tag{2}
\end{align*}
$$

the $\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ fragment of the molecule. We have done this by computing normal co-ordinates for a moiety $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{PtCl}_{2}-\mathrm{X}$, where X was a pseudo-atom of mass 30 . The force field for the $\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ group was taken to be one appropriate for Zeise's salt. There have been several i.r. and Raman studies on Zeise's salt, and there is some
sensitive to small changes in the force field. Table 3 compares calculated frequencies for $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{X}\right]$ with those observed for Zeise's salt ($\mathrm{X}=\mathrm{Cl}$).

Table 2
Internal co-ordinates and valence force field for the complex $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{X}\right]$ ($\mathrm{X}=$ pseudo-atom)

	$\begin{array}{c}\text { Force } \\ \text { constant }\end{array}$	$\begin{array}{c}\text { Co-ordinate }\end{array}$	$\begin{array}{c}\text { Force } \\ \text { constant }\end{array}$
Co-ordinate			

* Units are mdyn \AA^{-1} for stretch and stretch-stretch force constants, and mdyn \AA^{2} rad $^{-2}$ for angle bends (1 dyn $=$ $10^{-5} \mathrm{~N}$).

Table 3
Calculated vibrational wavenumbers with the force field of Table 2 compared to vibrational wavenumbers $\left(\mathrm{cm}^{-1}\right)$ of Zeise's salt

Wavenumber (cm^{-1})		Dominant contribution Symmetry to potential energy	
calc.	obs.		
2839	3013	a_{1}	$R_{\text {ch }}$
1519	1515		$\alpha_{\text {CHII }}$
1258	1243		$\alpha^{\mathbf{P t C H}}$
914	975		α_{HCC} and α_{HCH}
414	405		$R_{\text {PtC }}$
360	309		$R_{\text {PtX }}$
338	338		$R_{\text {PtCl }}$
146	104		$\alpha_{\text {crtal }}$ and $\alpha_{\text {clipt }}$
3092	3094	a_{2}	$R_{\text {CH }}$
1222	Not observed		$\alpha_{\text {PtCH }}$ and α_{HCC}
845	841		$\alpha_{\text {HCC }}$
145	158		$\alpha_{\text {CPtCl }}$
2989	2988	b_{1}	$R_{\text {CH }}$
1443	1426		$\alpha_{\text {HCH }}$
1030	1010		α_{HCC}
491	493		$R_{\text {PiC }}$
223	219		$\alpha_{\text {CPtX }}$
91	88		$\alpha_{\text {cPtCl }}$
3083	3079	b_{2}	$R_{\text {CH }}$
1156	1180		$\alpha_{\text {PtCH }}$
721	720		$\alpha_{\text {HCC }}$
329	327		$R_{\text {PtCl }}$
214	207		$\alpha_{\text {cPtCl }}$
164	181		$\alpha_{\text {ClPt }}$

[^1]
RESULTS AND DISCUSSION

The proton spectrum analyses as an $\mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime} \mathrm{A}^{\prime \prime}$ system, which means that the whole molecule must have a fixed structure with at least $C_{2 v}$ symmetry, or internal motion must generate this effective symmetry. Fixed structures with $C_{2 v}$ symmetry have $S_{x y}$ zero in equation (l), whereas this off-diagonal matrix element is of equal magnitude but changes in sign for symmetry-related rotational isomers, hence averaging gives zero for the term $4 S_{x y} \cos \theta_{i j x} \cos \theta_{i j y}$, provided that the bond lengths and angles are identical in each configuration. The proton spectrum alone, therefore, reveals the presence of internal rotation only if there are appreciable changes in structure in different rotational forms, in which case the relative nuclear positions derived from the dipolar couplings using equation (1) would be expected to differ appreciably from those derived for the crystalline form of Zeise's salt by neutron diffraction. ${ }^{7}$ To derive nuclear positions and S values from equation (l), using proton data only, it is necessary to assume the value of one interproton distance, and we have chosen this to be $r_{12}=1.833 \AA$, giving the data in Table 4 for

Table 4

Nuclear co-ordinates (\AA) of protons and platinum in $\left[\mathrm{PtCl}_{2}-\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{D}_{5}\right)$] and order parameters derived from dipolar couplings

 Co-ordinate			
			Neutron diffraction
	dhab	E7	
$x_{1}=x_{4}=-x_{2}=-x_{3}$	1.235	1.236	1.248
	± 0.001	± 0.001	± 0.005
$y_{1}=y_{2}=-y_{4}=-y_{3}{ }^{*}$	0.9163	0.9163	0.9163
$z_{1}=z_{2}=z_{3}=z_{4}$	2.179	2.174	2.185
	± 0.006	± 0.006	± 0.009
$z_{5}{ }^{*}$	0.0		0.0
$x_{5}=y_{5} *$	0.0		0.0
$S_{z z}$	0.248	0.225	
$S_{x x}-S_{y y}$	± 0.001	± 0.001	
	-0.150	-0.217	
	± 0.001	± 0.001	

the two sets of dipolar couplings. It is seen that the neutron-diffraction and n.m.r. results agree within experimental error; thus the proton data are insensitive to any internal rotations.

The deuterium quadrupole splittings can also provide limited but useful structural information. The splittings Δv are related to S values and γ_{i}, the angles made by the $\mathrm{C}-\mathrm{D}$ bonds and the z axis, as in (3) where θ is the angle that the plane of the pyridine ring makes with the PtCl_{2} plane. We have assumed that z is an axis of local $C_{2 v}$ symmetry for the pyridine ring The values of q_{CD}, the deuterium quadrupole coupling constant for the $C-D$ bonds, and η, the asymmetry parameter, have been determined for pyridine to be ${ }^{8} 181.9 \pm 1.0 \mathrm{kHz}$

7 R. A. Love, T. F. Koetzle, G. J. B. Williams, L. C. Andrews, and R. Bau, Inorg. Chem., 1975, 14, 2653.
and -0.039 respectively. With these values of q_{CD} and η it is possible to calculate the value for $S_{z z}$ from the

$$
\begin{align*}
& \Delta v_{i}=\frac{3}{2} q_{\mathrm{CD}}\left[S_{z z}\left(\cos ^{2} \gamma_{i}-\frac{1}{3} \eta \sin ^{2} \gamma_{i}\right)+\right. \\
& S_{x x}\left(\sin ^{2} \gamma_{i} \cos ^{2} \theta+\frac{1}{3} \eta \sin ^{2} \theta-\right. \\
& \left.\frac{1}{3} \eta \cos ^{2} \gamma_{i} \cos ^{2} \theta\right)+S_{y y}\left(\sin ^{2} \gamma_{i} \sin ^{2} \theta+\right. \\
& \left.\frac{1}{3} \eta \cos ^{2} \theta-\frac{1}{3} \eta \cos ^{2} \gamma_{i} \sin ^{2} \theta\right)+ \\
& \left.2 S_{x y} \sin \theta \cos \theta\left(\sin ^{2} \gamma_{i}-\frac{1}{3} \eta \cos ^{2} \gamma_{i}\right)\right] \tag{3}
\end{align*}
$$

magnitude of Δv_{8} for the E7 solution. For position 8 the splitting is independent of θ and γ_{8} is zero. The value of $S_{z z}$ determined in this way is 0.2337 ± 0.0002 compared with 0.255 ± 0.001 found from the proton dipolar couplings and assuming $r_{12}=1.833 \AA$. The close agreement confirms our assumption that z is collinear with the $C_{2 v}$ axis of local symmetry for the pyridine ring. We can also use the value of $S_{z z}$ found from Δv_{8}, together with dipolar couplings for the E7 solution given in Table 1, to determine an absolute size for the $\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ moiety. This gives the nuclear coordinates of proton 1 , relative to Pt as origin, of $x_{1}=$ $1.252 \pm 0.001, y_{1}=0.929 \pm 0.001$, and $z_{1}=2.085 \pm$ $0.006 \bar{\AA}$.

The splittings Δv_{6} and Δv_{7}, and the order parameter $S_{z z}$ and $S_{x x}-S_{y y}$, can be used to test whether the molecule is rigid or has internal motion. The conclusion drawn from the proton data for the ethylene group is that three models are possible: (a) a rigid structure with $C_{2 v}$ symmetry; (b) hindered rotation between the symmetry-related forms, each having only C_{2} symmetry; and (c) effectively free rotation. For case (a) $S_{x y}$ in equation (3) is zero, and θ is either 0 or 90°, and it is possible to determine the angles γ_{6} and γ_{7} from the Δv values. Taking into account the uncertainties in sign and assignment of the $\Delta \nu_{6}$ and $\Delta \nu_{7}$ splittings means that there are several possible sets of values of γ_{6} and γ_{7} which can be derived from the data from the dhab and E7 solutions. However, not one assignment gives the same pair of angles for both sets of results, hence model (a) can be rejected. Case (c) contains three kinds of situation. True free rotation would imply a constant potential energy as θ is varied, and would also imply a rotational frequency approaching the limit imposed by the amount of inertia. In this case it is probable that internal rotation is much faster than the reorientational period for the molecule in the liquid crystal, and Δv_{i} is dependent only on $\gamma_{i}, S_{z z}$, and η. However, the same conclusion is arrived at for the situation where the molecule moves between the two forms having $C_{2 v}$ symmetry, irrespective of the rate of motion. Both these cases may be tested again by calculating sets of values for γ_{6} and γ_{7}, and again not one assignment gives the same values of γ_{6} and γ_{7}, hence model (c) is rejected. There is a third kind of free rotation, one in which all the values of θ are sampled with near equal probability but the rate of rotation is slower than the rate of reorientation in the liquid crystal. Such a case is not solvable, and is, fortunately, most improbable.
${ }^{8}$ J. W. Emsley, J. C. Lindon, and J. Tabony, J.C.S. Faraday II, 1975, 579.

For case (b) the unknowns in equation (3) are γ_{6}, γ_{7}, and a separate value of $S_{x y}$ for each of the two sets of data. Calculations made with $\gamma_{6}=58.4^{\circ}$ and $\gamma_{7}=$ 62.2°, the values appropriate for free pyridine, ${ }^{9}$ show that values of $S_{x y}$ can be chosen which bring observed and calculated splittings into close agreement when θ lies anywhere between $c a .30$ and 70°, and when the assignments are made of the $\Delta \nu$ values (in Hz) as follows:

Solution	$\Delta \nu_{6}$	$\Delta \nu_{7}$
dhab	-3718	-11134
E7	-9425	-15957

Small changes in γ_{6} and γ_{7} will widen the range of acceptable solutions, hence θ cannot be determined with
${ }^{9}$ G. O. Sorensen, L. Mahler, and N. Rastrup-Andersen, J. Mol. Structure, 1974, 20, 119.
any greater precision than to state that it must be between about 10 and 80°. Values of θ have been determined by Meesler and Olie ${ }^{10}$ for crystalline dichloro(ethylene)platinum(II) complexes of substituted pyridines as 50 (for p-methyl substituted) and 46° (p-cyano); thus our results are in broad agreement, with the additional information that the pyridine ring and ethylene groups move relative to one another so that the four positions with constant θ are equally probable.
J. E. thanks the Royal Society for the award of a Pickering Research Fellowship.
[8/112 Received, 23rd January, 1978]
10 M. A. M. Meesler and K. Olie, Crystal. Struct. Comm., 1975, 4, 725 .

[^0]: ${ }^{3}$ D. R. McMillin and R. S. Drago, Inovg. Chem., 1974, 13, 546.
 ${ }^{4}$ F. Pesa and M. Orchin, J. Organometallic Chem., 1974, 78, C26.

[^1]: ${ }^{5}$ N. J. D. Lucas, Mol. Phys., 1971, 22, 233.
 ${ }^{6}$ J. Hiraishi, Spectrochim. Acta, 1969, A25, 749.

